Letx(t) = t ^ 3 - 4t ^ 2 + t and y(t) = t ^ 2 - 3t + 3

Explanation:
The functions are given below as
[tex]\begin{gathered} x(t)=t^3-4t^2+t \\ y(t)=t^2-3t+3 \end{gathered}[/tex]Part 1:
To figure out x(2) , we will put t=2
[tex]\begin{gathered} x(t)=t^{3}-4t^{2}+t \\ x(2)=2^3-4(2^2)+2 \\ x(2)=8-16+2 \\ x(2)=-6 \end{gathered}[/tex]Hence,
The final answer is
[tex]x(2)=-6[/tex]Part 2:
To figure out y(2), we will put t=2
[tex]\begin{gathered} y(t)=t^{2}-3t+3 \\ y(2)=2^2-3(2)+3 \\ y(2)=4-6+3 \\ y(2)=1 \end{gathered}[/tex]Hence,
The final answer is
[tex]y(2)=1[/tex]