Answer:
The coordinates of image of the point (-9,3) is;
[tex](-8,1)[/tex]Explanation:
Given that;
The image of the point (0,9) under a translation is (1,7).
Let us find the rule of the translation;
[tex](0,9)\rightarrow(1,7)[/tex]Let us find the change in each axis;
[tex]\begin{gathered} \Delta x=1-0=1 \\ \Delta y=7-9=-2 \end{gathered}[/tex]So, the rule of the translation will be;
[tex]\begin{gathered} (x,y)\rightarrow(x+\Delta x,y+\Delta y) \\ (x,y)\rightarrow(x+1,y-2) \end{gathered}[/tex]Now that we have the rule, let us apply it to get the image of the point (-9,3);
[tex]\begin{gathered} (x,y)\rightarrow(x+1,y-2) \\ (-9,3)\rightarrow(-9+1,3-2) \\ (-9,3)\rightarrow(-8,1) \end{gathered}[/tex]Therefore, the coordinates of image of the point (-9,3) is;
[tex](-8,1)[/tex]