Answer:
(4, 2)
Explanation:
Given the coordinates of a line segment with endpoints T and U below:
[tex]\begin{gathered} (x_1,y_1)=T\left(3,1\right) \\ (x_2,y_2)=U\left(5,3\right) \end{gathered}[/tex]To find the coordinates of the midpoint of TU, we use the midpoint formula given below:
[tex]\begin{equation}M(x,y)=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right) \end{equation}[/tex]Substitute the given values:
[tex]M(x,y)=\left(\dfrac{3+5}{2},\dfrac{1+3}{2}\right)[/tex]Then simplify:
[tex]M(x,y)=\left(\dfrac{8}{2},\dfrac{4}{2}\dfrac{}{}\right)=(4,2)[/tex]The midpoint of segment TU is at (4, 2).