-Draw the given angle in standard position.-Find and label the reference angle.-Determine the exact values for the sides of the triangle formed with the reference angle and the x-axis with the value of the hypotenuse as 1. -Label the sides on picture of your triangle right out the exact answer to each of the six trig functions.[tex]0 = \frac{4\pi}{3} [/tex]determine the exact values for:[tex] \sin0 = [/tex][tex] \cos0 = [/tex][tex] \tan0 = [/tex][tex] \csc = 0[/tex][tex] \sec = 0[/tex][tex] \cot0 = [/tex]

Respuesta :

Question:

Solution:

Remember the trigonometric circle (unit circle):

Remember that in this circle, the y-coordinates are the sine functions and the x-coordinates are the cosine functions. Thus, notice that 3pi/4 is 135 degrees, and :

[tex]\cos \text{ (}\frac{3\pi}{4}\text{)}=\text{ x - coordinate =- }\frac{\sqrt[]{2}}{2}[/tex]

[tex]\sin \text{ (}\frac{3\pi}{4}\text{)}=\text{ y - coordinate = }\frac{\sqrt[]{2}}{2}[/tex]

[tex]\tan \text{(}\frac{3\pi}{4}\text{)}=\text{ }\frac{\sin (\frac{3\pi}{4})}{\cos (\frac{3\pi}{4})}=\text{ -1}[/tex]

[tex]cot\text{(}\frac{3\pi}{4}\text{)}=\text{ }\frac{\cos (\frac{3\pi}{4})}{\sin (\frac{3\pi}{4})}=\text{ -1}[/tex]

[tex]\csc \text{ (}\frac{3\pi}{4}\text{)}=\text{ }\frac{1}{\sin (\frac{3\pi}{4})}=\frac{2}{\sqrt[]{2}}[/tex]

[tex]\sec \text{ (}\frac{3\pi}{4}\text{)}=\text{ }\frac{1}{\cos (\frac{3\pi}{4})}=-\frac{2}{\sqrt[]{2}}[/tex]

Ver imagen AmilyaZ120057
Ver imagen AmilyaZ120057