Question:
Solution:
Remember the trigonometric circle (unit circle):
Remember that in this circle, the y-coordinates are the sine functions and the x-coordinates are the cosine functions. Thus, notice that 3pi/4 is 135 degrees, and :
[tex]\cos \text{ (}\frac{3\pi}{4}\text{)}=\text{ x - coordinate =- }\frac{\sqrt[]{2}}{2}[/tex][tex]\sin \text{ (}\frac{3\pi}{4}\text{)}=\text{ y - coordinate = }\frac{\sqrt[]{2}}{2}[/tex][tex]\tan \text{(}\frac{3\pi}{4}\text{)}=\text{ }\frac{\sin (\frac{3\pi}{4})}{\cos (\frac{3\pi}{4})}=\text{ -1}[/tex]
[tex]cot\text{(}\frac{3\pi}{4}\text{)}=\text{ }\frac{\cos (\frac{3\pi}{4})}{\sin (\frac{3\pi}{4})}=\text{ -1}[/tex]
[tex]\csc \text{ (}\frac{3\pi}{4}\text{)}=\text{ }\frac{1}{\sin (\frac{3\pi}{4})}=\frac{2}{\sqrt[]{2}}[/tex]
[tex]\sec \text{ (}\frac{3\pi}{4}\text{)}=\text{ }\frac{1}{\cos (\frac{3\pi}{4})}=-\frac{2}{\sqrt[]{2}}[/tex]