Respuesta :

The given equation

[tex]e^{(2-3x)}=125[/tex]

Insert ln on both sides

[tex]ln(e^{2-3x})=ln125[/tex]

Use the power rule

[tex](2-3x)ln(e)=ln(125)[/tex]

Substitute ln(e) by 1

[tex]2-3x=ln(125)[/tex]

Subtract 2 from each side

[tex]\begin{gathered} 2-2-3x=-2+ln(125) \\ \\ -3x=-2+ln(125) \end{gathered}[/tex]

Multiply all terms by -1

[tex]3x=2-ln(125)[/tex]

Divide both sides by 3

[tex]\begin{gathered} \frac{3x}{3}=\frac{2-ln(125)}{3} \\ \\ x=\frac{2-ln(125)}{3} \\ \\ x\approx-0.943 \end{gathered}[/tex]