Respuesta :

Given the expression:

[tex]-5(4-8x)-x=5x+14[/tex]

To solve for x, first we use the distributive property to get rid of the parenthesis:

[tex]-5(4-8x)=-20+40x[/tex]

Then, we have:

[tex]\begin{gathered} -5(4-8x)-x=5x+14 \\ \Rightarrow-20+40x-x=5x+14 \end{gathered}[/tex]

Now we pass to one side the equation all the terms that have 'x' and to the other side the constants:

[tex]\begin{gathered} -20+40x-x=5x+14 \\ \Rightarrow40x-x-5x=14+20 \end{gathered}[/tex]

Solving for x we have:

[tex]\begin{gathered} 40x-x-5x=14+20 \\ \Rightarrow40x-6x=34 \\ \Rightarrow34x=34 \\ \Rightarrow x=\frac{34}{34}=1 \\ x=1 \end{gathered}[/tex]

Therefore,x