ANSWER:
0.0562 J
STEP-BY-STEP EXPLANATION:
Angular momentum is expressed in terms of moment of inertia and angular velocity. This is expressed as follows:
[tex]L=I\cdot\omega[/tex]Here, I is the angular momentum and ω is the angular velocity.
Angular momentum is mass time the square of the radius of the object. Moment of inertia for a uniform disk is given as,
[tex]I=\frac{1}{2}m\cdot r^2[/tex]Here, m is the mass of the disk and r is the radius of the disk.
Replacing:
[tex]L=\frac{1}{2}m\cdot r^2\cdot\omega[/tex]Convert the units of angular velocity into rad/s.
[tex]\begin{gathered} \omega=0.55\text{ rev/s}\cdot\frac{2\pi\text{ rad}}{1\text{ rev}} \\ \omega=3.46\text{ rad/s} \end{gathered}[/tex]We replace each data to calculate the angular momentum:
[tex]\begin{gathered} L=\frac{1}{2}\cdot3.25\cdot0.1^2\cdot3.46 \\ L=0.0562 \end{gathered}[/tex]The angular momentum of the uniform disk is 0.0562 J