Respuesta :

1. (1/125)^-2/3

Here are the steps in simplifying the given term.

a. Make the exponent positive by getting the reciprocal of the base.

[tex](\frac{1}{125})^{-\frac{2}{3}}\Rightarrow(125)^{\frac{2}{3}}[/tex]

b. Get the cube root of 125.

[tex]\sqrt[3]{125}=5[/tex]

c. Square the result in step b.

[tex]5^2=5\times5=25[/tex]

Therefore, (1/125)^-2/3 = 25.

2. 64^-2/3

To simplify this, we follow the same steps shown above.

a. Again, make the exponent positive by getting the reciprocal of the base.

[tex]64^{-\frac{2}{3}}\Rightarrow(\frac{1}{64})^{\frac{2}{3}}[/tex]

b. Get the cube root of 1/64.

[tex]\sqrt[3]{\frac{1}{64}}=\frac{1}{4}[/tex]

c. Square the result in step b.

[tex](\frac{1}{4})^2=\frac{1}{4}\times\frac{1}{4}=\frac{1}{16}[/tex]

Hence, 64^-2/3 = 1/16.