Amina, Lloyd and Katelyn decide to buy lottery tickets, agreeing to share any winnings in a ratio of 3/7 : 1 : 2/5 which is in the same ratio as they spent on tickets. If they end up winning $10,210, calculate how much each should receive from the winnings.A) Amina’s $_____B) Lloyd’s $_____C) Katlyn’s $_____

Respuesta :

Given the ratio:

[tex]\frac{3}{7}:1:\frac{2}{5}[/tex]

Therefore we add the ratios:

[tex]\frac{3}{7}+1+\frac{2}{5}=\frac{64}{35}[/tex]

So, the winning is given by:

Amina

[tex](\frac{3}{7}\div\frac{64}{35})\times10210=\frac{3\times35}{7\times64}\times10210=\frac{105}{448}\times10210=2392.97[/tex]

Lloyd

[tex](1\div\frac{64}{35})\times10210=\frac{1\times35}{1\times64}\times10210=\frac{35}{64}\times10210=5583.59[/tex]

Katlyn

[tex](\frac{2}{5}\div\frac{64}{35})\times10210=\frac{2\times35}{5\times64}\times10210=\frac{70}{320}\times10210=2233.44[/tex]

Answer:

Amina - $2392.97

Lloyd - $5583.59

Katlyn - $2233.44