Respuesta :

Given that

[tex]\tan \theta=\frac{5}{12}\text{ and 0}^0<\theta<90^0,[/tex]

we are asked to find the value of sec θ. This can be seen below.

Explanation

[tex]\tan \theta=\frac{5}{12}=\frac{\text{opposite}}{Adjacent}[/tex]

We can represent the information in the diagram below;

Therefore we know that

[tex]\sec \theta=\frac{Hypotenuse}{Adjacent}[/tex]

This implies we will need to get the hypotenuse using the Pythagoras theorem. Hence;

[tex]\begin{gathered} (\text{Hypotenuse)}^2=(\text{opposite)}^2+(\text{adjacent)}^2 \\ x^2=12^2+5^2 \\ x=\sqrt[]{144+25} \\ x=\sqrt[]{169} \\ x=13 \end{gathered}[/tex]

Therefore,

[tex]\sec \theta=\frac{\text{Hypotenuse}}{Adjacent}=\frac{x}{12}=\frac{13}{12}[/tex]

Answer:

[tex]\sec \theta=\frac{13}{12}[/tex]

Ver imagen JabdielQ482823