Respuesta :

Given:

There are given that inequality:

[tex]-36\leq2x+4(x-3)[/tex]

Explanation:

According to the question:

We need to solve the above-given inequality:

[tex]\begin{gathered} -36\leqslant2x+4(x-3) \\ -36\leqslant2x+4x-12 \end{gathered}[/tex]

Then,

[tex]\begin{gathered} -36\leqslant2x+4x-12 \\ -36\leqslant6x-12 \end{gathered}[/tex]

Then,

[tex]6x-12\ge-36[/tex]

Then,

Add 12 on both sides of the equation:

[tex]\begin{gathered} 6x-12\geqslant-36 \\ 6x-12+12\geqslant-36+12 \\ 6x\ge-24 \end{gathered}[/tex]

Then,

Divide by 6 on both sides of the equation:

So,

[tex]\begin{gathered} 6x\geqslant-24 \\ \frac{6x}{6}\geqslant\frac{-24}{6} \\ x\ge-4 \end{gathered}[/tex]

We can see that the value of x is greater than and equal to -4.

Final answer:

Hence, the correct option is B.