If AHBN - ALYR, find the value of x.BRx +1128YL21NH3x - 7A. O 7.4B.06C.13.3D.13

Here, we want to find the value of x
Mathematically, when two triangles are similar, the ratios of their corresponding sides are equal
Thus, we have it that;
[tex]\begin{gathered} \frac{HN}{BH}\text{ = }\frac{LY}{RL} \\ \\ \frac{3x-7}{28}\text{ = }\frac{x+11}{21} \\ \\ 21(3x-7)\text{ = 28(x+11)} \\ 63x-147=\text{ 28x+ 308} \\ 63x-28x\text{ = 308+147} \\ \\ 35x\text{ = 455} \\ x\text{ = }\frac{455}{35} \\ x\text{ = 13} \end{gathered}[/tex]