Respuesta :

Answer:

5π/6 and 7π/6

Explanation:

Using the inverse function of cosine, we get:

[tex]\begin{gathered} \text{cos x = }\frac{-\sqrt[]{3}}{2} \\ x=\cos ^{-1}(\frac{-\sqrt[]{3}}{2}) \\ x=\frac{5\pi}{6} \end{gathered}[/tex]

Then, cos(x) = cos(-x), so:

[tex]\cos (\frac{5\pi}{6})=\cos (\frac{-5\pi}{6})=\frac{-\sqrt[]{3}}{2}[/tex]

Finally, -5π/6 is also equivalent to 7π/6, because:

2π - 5π/6 = 7π/6

So, all the angles between o and 2π that satisfy the condition are:

5π/6 and 7π/6