which of the following is equivalent to the radical expression below, when the denominator has been rationalized x is greater than or equal to 5

Let's continue
[tex]\frac{10}{\sqrt[]{x}\text{ - }\sqrt[]{x\text{ - 5}}}\cdot\text{ }\frac{\sqrt[]{x}\text{ + }\sqrt[]{x\text{ - 5}}}{\sqrt[]{x}\text{ + }\sqrt[]{x\text{ - 5}}}\text{ = }\frac{10\sqrt[]{x}\text{ + 10}\sqrt[]{x\text{ - 5}}}{x\text{ - x + 5}}[/tex][tex]\begin{gathered} \frac{10(\sqrt[]{x}\text{ + }\sqrt[]{x\text{ - 5}})}{5} \\ 2(\sqrt[]{x}\text{ + }\sqrt[]{x\text{ - 5}}) \end{gathered}[/tex]Letter A is the correct answer