Respuesta :

We have

[tex]y=-x^2-22x-112[/tex]

For the vertex we have the next formula

for the x-coordinate of the vertex

[tex]x=\frac{-b}{2a}[/tex]

In our case

a=-1

b=-22

[tex]x=\frac{22}{2(-1)}=-11[/tex]

then we substitute this value in the function

[tex]y=-(-11)^2-22(-11)-112=9[/tex]

The vertex is (-11,9)

For the roots we make y=0

[tex]\begin{gathered} -x^2-22x-112=0 \\ x^2+22+112=0 \end{gathered}[/tex]

Then we factorize

[tex](x+14)(x+8)=0[/tex]

The roots are

x=-14

x=-8

Then for other two points

x=-15

[tex]-(-15)^2-22(-15)-112=-7[/tex]

Point (-15,7)

x=-7

[tex]-(-7)^2-22(-7)-112=-7[/tex]

Point (-7,-7)

the x-sel1

the ysel : 2