we get that the equation that models the situation is:
[tex]m=610\cdot k^t^{}[/tex]when t=2. We get that
[tex]340=610\cdot k^2\rightarrow k=\sqrt[]{\frac{340}{610}}\approx0.75[/tex]so we get that after 7 years ( 1997 )
[tex]m=610\cdot(\sqrt[]{\frac{340}{610}})^7\approx79[/tex]