Respuesta :

We are given the triangles:

We know:

AB = 20

BC = 12

DB = 2x + 7

BE = 9

EC = 3

The triangles ABC and DBE are similar, which means, that there is a number k, such that each side of the triangle ABC multiplied by k is equal to the corresponding side in triangle DBE

We can find the number k, using the sides BC and BE:

[tex]k\cdot BC=BE[/tex]

Substitute and solve:

[tex]\begin{gathered} k\cdot12=9 \\ . \\ k=\frac{9}{12} \\ . \\ k=\frac{3}{4} \end{gathered}[/tex]

Now, we can find x because:

[tex]\frac{3}{4}AB=DB[/tex]

Substitute and solve:

[tex]\begin{gathered} \frac{3}{4}\cdot20=2x+7 \\ . \\ 15-7=2x \\ x=\frac{8}{2} \\ . \\ x=4 \end{gathered}[/tex]

The answer is x = 4

Ver imagen FabriceL63371