Respuesta :

We want to calculate the following division

[tex]\frac{x^4-2x^2+kx+6}{x-2}[/tex]

To efetuate this divison, we start by dividing the leading term of the dividend by the leading term of the divisor:

[tex]\frac{x^4}{x}=x^3[/tex]

Then, we multiply this result by the divisor:

[tex]x^3(x-2)=x^4-2x^3[/tex]

Then, subtract the dividend from the obtained result:

[tex](x^4-2x^2+kx+6)-(x^4-2x^3)=2x^3-2x^2+kx+6[/tex]

Then, we can rewrite our division as:

[tex]\frac{x^{4}-2x^{2}+kx+6}{x-2}=x^3+\frac{2x^3-2x^2+kx+6}{x-2}[/tex]

The remainder of this first division still have a polynomial on the dividend, therefore, we can iterate the previous process until we find the final result of this division.

[tex]\begin{gathered} \frac{x^{4}-2x^{2}+kx+6}{x-2}= x^{3}+\frac{2x^{3}-2x^{2}+kx+6}{x-2} \\ =x^3+2x^2+\frac{2x^2+kx+6}{x-2} \\ =x^3+2x^2+2x+\frac{x(k+4)+6}{x-2} \\ =x^3+2x^2+2x+k+4+\frac{2k+14}{x-2} \end{gathered}[/tex]

And this is the final result of the division.

[tex]\frac{x^4-2x^2+kx+6}{x-2}=x^3+2x^2+2x+k+4+\frac{2k+14}{x-2}[/tex]

We want to find the value of k that will make the remainder equal to

The remainder of this division is

[tex]\frac{2k+14}{x-2}[/tex]

Then, we just need to solve for k the following equation

[tex]\begin{gathered} \frac{2k+14}{x-2}=0\implies2k+14=0 \\ 2k=-14 \\ k=-\frac{14}{2} \\ k=-7 \end{gathered}[/tex]

The value of k must be - 7.

.