Two resistors with values of 12 Ω and 44 Ω, respectively, are connected in parallel and hooked to a 17 V batter.(a)What would be the current in the circuit? ___________:A(b)What would be the power expended in the circuit?____________: W

Respuesta :

First, let's calculate the equivalent resistance between the two parallel resistances:

[tex]\begin{gathered} \frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}\\ \\ \frac{1}{R_{eq}}=\frac{1}{12}+\frac{1}{44}\\ \\ \frac{1}{R_{eq}}=\frac{11}{132}+\frac{3}{132}\\ \\ \frac{1}{R_{eq}}=\frac{14}{132}=\frac{7}{66}\\ \\ R_{eq}=\frac{66}{7}\text{ \Omega} \end{gathered}[/tex]

(a)

To calculate the current in the circuit, let's use Ohm's Law with the equivalent resistance:

[tex]\begin{gathered} I=\frac{V}{R}\\ \\ I=\frac{17}{\frac{66}{7}}\\ \\ I=1.803\text{ A} \end{gathered}[/tex]

(b)

To calculate the power, we can use the formula below:

[tex]\begin{gathered} P=I\cdot V\\ \\ P=1.803\cdot17\\ \\ P=30.65\text{ W} \end{gathered}[/tex]