Answer:
Vertex = (-2,-3).
Explanation:
Given the equation of the parabola:
[tex]y=3\mleft(x+3\mright)\mleft(x+1\mright)[/tex]First, we find the axis of symmetry using the formula:
[tex]\begin{gathered} x=\frac{r+s}{2}\text{ (r and s are the zeros)}\colon r=-3,s=-1 \\ x=\frac{-3-1}{2} \\ x=-\frac{4}{2} \\ x=-2 \end{gathered}[/tex]Next, determine the value of y at x=-2:
[tex]\begin{gathered} y=3\mleft(x+3\mright)\mleft(x+1\mright) \\ y=3\mleft(-2+3\mright)\mleft(-2+1\mright) \\ =3(1)(-1) \\ y=-3 \end{gathered}[/tex]Thus. the vertex of the parabola is (x,y)=(-2,-3).