Rita has a circular hot tub . The hot tub has a circumference of 25.12 feet . It is 3.5 feet deep. c. The hot tub manual recommends filling the hot tub to 80% of its full capacity. Howmuch water should Rita put in the hot tub in order to follow the recommendation?

Respuesta :

Step 1

The circular hot tube is in the shape of a cylinder. Therefore its volume will be;

[tex]v=\pi\times r^2\times h[/tex]

where;

[tex]\begin{gathered} circumference=2\times\pi\times r=25.12ft \\ h=3.5feet \end{gathered}[/tex]

Find r, using the circumference

[tex]\begin{gathered} 2\times\pi\times r=25.12 \\ \pi r=\frac{25.12}{2} \\ r=\frac{25.12}{2\pi} \\ \end{gathered}[/tex]

Step 2

Find the volume of the hot tube at 100%

[tex]\begin{gathered} v=\pi\times(\frac{25.12}{2\pi})^2\times3.5 \\ v=3.5\pi\frac{25.12^2}{2^2\pi^2} \\ v=3.5\times\:50.21453046 \\ v=175.7508566ft^3 \end{gathered}[/tex]

Step 3

Find the recommended capacity which is 80% full

[tex]\begin{gathered} \frac{175.7508566}{x}=\frac{100}{80} \\ x=140.6006853ft^3 \\ \end{gathered}[/tex]

Note; 1 Cubic foot=7.48052 gallons of water. Therefore, the water Rita should put in the hot tub will be;

[tex]\begin{gathered} \frac{140.6006853ft^3}{1ft^3}=\frac{y}{7.48052} \\ y=1051.766238\text{ gallons of water} \\ \approx1051.77\text{ gallons of water} \end{gathered}[/tex]

Answer;

[tex]1051.77\text{ gallons of water}[/tex]