Graphing an exponential function and its asymptote: f(x)=b-x or f(x)=-bax

Given:
[tex]f(x)=-3^{-x}[/tex]To plot five points on the graph, we input any values of x into the given function.
Example:
Let x=2
So,
[tex]\begin{gathered} f(x)=-3^{-x} \\ =-3^{-2} \\ =-\frac{1}{9}\text{ or -0.1111} \end{gathered}[/tex]Thus, the point is (2,-1/9).
Let x=1:
[tex]\begin{gathered} f(x)=-3^{-x} \\ =-3^{-1} \\ =-\frac{1}{3}\text{ or -0.3333} \end{gathered}[/tex]Thus, the point is (1,-1/3).
Let x=0
[tex]\begin{gathered} f(x)=-3^{-x} \\ =-3^{-0} \\ =-1 \end{gathered}[/tex]Thus, the point is (0,-1).
Let x=-1
[tex]\begin{gathered} f(x)=-3^{-x} \\ =-3^{-(-1)} \\ =-3 \end{gathered}[/tex]Thus, the point is (-1,-3).
Let x=-0.5
[tex]\begin{gathered} f(x)=-3^{-x} \\ =-3^{-(-0.5)} \\ =-1.732 \end{gathered}[/tex]Thus, the point is (-0.5,-1.732).
Then, to get the asymptote, we use