Respuesta :

Given,

The sequence is shown in the question.

The sequence is,

[tex]3,6,10,15,21,\ldots\text{..}[/tex]

The difference in the consecutive term,

[tex]\begin{gathered} 6-3=3 \\ 10-6=4 \\ 15-10=5 \\ 21-15=6 \end{gathered}[/tex]

The pattern of the sequence is,

[tex]\begin{gathered} 6=3+2+1 \\ 10=6+3+1 \\ 15=10+4+1 \\ 21=15+5+1 \end{gathered}[/tex]

[tex]\text{pattern}=previous\text{ term +(place value )+1}[/tex]

Hence, the pattern of the series is ((previous term)+place value +1)