Respuesta :

Given the expression

[tex]21(2-x)+12x=44[/tex]

To find the value of x.

Open the bracket

[tex]\begin{gathered} 21(2-x)+12x=44 \\ 42-21x+12x=44 \\ 42-9x=44 \end{gathered}[/tex]

Collect like terms

[tex]\begin{gathered} 42-9x=44 \\ -9x=44-42 \\ -9x=2 \\ \text{Divide both sides by -9} \\ \frac{-9x}{-9}=\frac{2}{-9} \\ x=-\frac{2}{9} \end{gathered}[/tex]

Hence, the value of x is -2/9

To check,

Substitute the value of x into the given expression,

If both sides are equal, then the value of x is correct.

Substitute -2/9 for x into the expression given

[tex]\begin{gathered} 21(2-x)+12x=44 \\ 21(2-(-\frac{2}{9}))+12(-\frac{2}{9})=44 \\ 21(2+\frac{2}{9})-\frac{8}{3}=44 \\ 21(\frac{18+2}{9})-\frac{8}{3}=44 \\ 21(\frac{20}{9})-\frac{8}{3}=44 \\ \frac{140}{3}-\frac{8}{3}=44 \\ \frac{140-8}{2}=44 \\ \frac{132}{3}=44 \\ 44=44 \\ \text{RHS}=\text{LHS} \\ Thus\text{ x}=-\frac{2}{9} \end{gathered}[/tex]

Since the right handside is equal to the left handside, i.e 44 = 44,

Hence, the value of x is -2/9