Respuesta :

To find the perpendicular bisected of the line segment whose endpoints are (3,-7) (-9,-3).​

We need to things:

1. the midpoint of the given point

2. the slope

The midpoint = p

[tex]p=\frac{(3,-7)+(-9,-3)}{2}=\frac{(-6,-10)}{2}=(-3,-5)[/tex]

To find the slope, first we will find the slope of the line segment whose endpoints are

(3,-7) (-9,-3)

so,

Slope = m = rise/run

Rise = -3 - (-7) = 4

Run = -9 - 3 = -12

Slope =

[tex]m=\frac{4}{-12}=-\frac{1}{3}[/tex]

The slope of the required line = m'

[tex]m^{\prime}=-\frac{1}{m}=-\frac{1}{\frac{-1}{3}}=3[/tex]

So, the equation of the line will be :

[tex]y=3x+b[/tex]

b is the y - intercept and will be calculated using the point p

when x = -3 , y = -5

so,

[tex]\begin{gathered} -5=3\cdot-3+b \\ -5=-9+b \\ b=-5+9 \\ b=4 \end{gathered}[/tex]

So, the equation for the perpendicular bisected is:

[tex]y=3x+4[/tex]

Otras preguntas