Given:
• Number if cards in a deck = 52
Let's find the probability of selecting a six or a nine if you randomly select one card from the 52-card deck.
To find the probability, apply the formula:
[tex]P(\text{six or nine)= P(six) + P(nine)}[/tex]Where:
• Number of six's in a deck = 4
,• Number of nine's in a deck = 4
Thus, we have:
[tex]\begin{gathered} P(six)=\frac{4}{52} \\ \\ P(nine)=\frac{4}{52} \\ \\ P(\text{six or nine)=}\frac{4}{52}+\frac{4}{52} \\ \\ P(\text{six or nine) = }\frac{4+4}{52}=\frac{8}{52}=\frac{2}{13} \end{gathered}[/tex]Therefore, the pprobability of selecting a six or a nine is 2/13.
ANSWER:
[tex]\frac{2}{13}[/tex]