A ball is thrown in the air from the top of a building. Its height, in meters above ground, as a function of time, in seconds, is given by h(t) = −4.9t2 + 24t + 10. How long does it take to reach maximum height? (Round your answer to three decimal places.)

Respuesta :

Given:

The function is:

[tex]h(t)=-4.9t^2+24t+10[/tex]

Find-:

The maximum height of function.

Explanation-:

The critical points:

[tex]h(t)=-4.9t^2+24t+10[/tex]

The function derivative is;

[tex]\begin{gathered} h(t)=-4.9t^2+24t+10 \\ \\ h^{\prime}(t)=-4.9\times2t+24 \\ \\ h^{\prime}(t)=-9.8t+24 \end{gathered}[/tex]

The critical value of function is h'(t) = 0

[tex]\begin{gathered} h^{\prime}(t)=-9.8t+24 \\ \\ h^{\prime}(t)=0 \\ \\ -9.8t+24=0 \\ \\ 9.8t=24 \\ \\ t=\frac{24}{9.8} \\ \\ t=2.45 \end{gathered}[/tex]

The maximum value is:

[tex]\begin{gathered} h(t)=-4.9t^2+24t+10 \\ \\ h(2.45)=-4.9(2.45)^2+24(2.45)+10 \\ \\ h(2.45)=39.3878 \end{gathered}[/tex]

The maximum value is 39.3878