Respuesta :

The midpoint is given by the following expression:

[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Where:

Therefore:

[tex](M_x,M_y)=(\frac{X_1+X_2}{2},\frac{y_1+y_2}{2})[/tex]

Replacing:

Mx= 5 and My=6

Qx= X1 =-1 and Qy= y1=3

Rx=X2 and Ry= Y2

[tex](5,6)=(\frac{-1+x_2}{2},\frac{3+y_2}{2})[/tex]

Equating the x component and solving for X2:

[tex]\begin{gathered} 5=\frac{-1+x_2}{2} \\ 5*2=-1+x_2 \\ 10+1=x_2 \\ x_2=11 \end{gathered}[/tex]

Doing the same with the y component:

[tex]\begin{gathered} 6=\frac{3+y_2}{2} \\ 6*2=3+y_2 \\ y_2=12-3=9 \\ y_2=9 \end{gathered}[/tex]

Answer: the coordinates of R are: (X2,Y2) = (11 , 9).

Ver imagen EllajaneI285281