Answer:
The coordinates of B are (-5, 6)
Explanation:
The midpoint of AB with coordinates:
[tex]\begin{gathered} (x_1,y_1),(x_2,y_2) \\ \end{gathered}[/tex]is given as:
[tex]M(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]Since the coordinate of A are (-7, 2), we have:
[tex]M(\frac{-7+x_2}{2},\frac{2+y_2}{2})=M(-6,4)[/tex][tex]\begin{gathered} \frac{-7+x_2}{2}=-6 \\ \\ -7+x_2=-12 \\ \\ x_2=-5 \end{gathered}[/tex][tex]\begin{gathered} \frac{2+y_2}{2}=4 \\ \\ 2+y_2=8 \\ \\ y_2=6 \end{gathered}[/tex]Therefore, the coordinates of B are (-5, 6)