Respuesta :

We are given the equation:

[tex]V=hH\frac{b_1+b_2}{6}[/tex]

a) It's equired to solve the equation for b12.

Multipl both sides of ethe equation by 6 to eliminae denominators:

[tex]6V=hH(b_1+b_2)[/tex]

Divide by hH to isolate the sum of b1 + b2:

[tex]b_1+b_2=\frac{6V}{hH}[/tex]

Finally, subtract b1:

[tex]b_2=\frac{6V}{hH}-b_1[/tex]

b) Given the values V = 216, h = 8, H = 9, and b1 = 5, substitute in the equation above:

[tex]b_2=\frac{6\cdot216\text{ }cm^3}{8\text{ cm 9 cm}}-5\text{ cm}[/tex]

Calculating:

[tex]\begin{gathered} b_2=\frac{1296\text{ }cm^3}{72\text{ cm}^2}-5\text{ cm} \\ \\ b_2=18\text{ cm}-5\text{ cm=13 cm} \end{gathered}[/tex]

Answer: b2 = 13 cm