Use the sum and difference identities to rewrite the following expression as a trigonometric function of a single number.tan(5014+ tantan (14)tan(1)571 - tan

Use the sum and difference identities to rewrite the following expression as a trigonometric function of a single numbertan5014 tantan 14tan1571 tan class=

Respuesta :

From the sum identity of the tangent function given by

[tex]\tan (\alpha+\beta)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\cdot\tan\beta}[/tex]

and by comparing this fomula with our expression, we can note that

[tex]\begin{gathered} \alpha=\frac{5\pi}{14} \\ \text{and} \\ \beta=\frac{\pi}{14} \end{gathered}[/tex]

Then by substituting these values into the formula, we get

[tex]\tan (\frac{5\pi}{14}+\frac{\pi}{14})=\frac{\tan\frac{5\pi}{14}+\tan\frac{\pi}{14}}{1-\tan\frac{5\pi}{14}\cdot\tan\frac{\pi}{14}}[/tex]

Since

[tex]\frac{5\pi}{14}+\frac{\pi}{14}=\frac{6\pi}{14}=\frac{3\pi}{7}[/tex]

the answer is:

[tex]tan\frac{3\pi}{7}[/tex]