Respuesta :

Solution:

Given:

[tex]\frac{4.8\times10^{-4}}{8.0\times10^{-10}}[/tex]

Separating the number and the exponents,

[tex]\begin{gathered} \frac{4.8}{8.0}=0.6 \\ \frac{10^{-4}}{10^{-10}},\text{ applying the quotient }law\text{ of exponent,} \\ \frac{x^a}{x^b}=x^{a-b} \\ \\ \text{Hence,} \\ \frac{10^{-4}}{10^{-10}}=10^{-4-(-10)}=10^{-4+10}=10^6 \end{gathered}[/tex]

Combining both simplified number and exponent together,

[tex]\begin{gathered} \frac{4.8\times10^{-4}}{8.0\times10^{-10}}=0.6\times10^6 \\ 0.6\times10^6,\text{ taking it to standard form,} \\ 0.6\times10^6=6\times10^{-1}\times10^6 \\ \\ \text{Applying the product law of exponents,} \\ x^a\times x^b=x^{a+b} \\ \text{Then,} \\ 6\times10^{-1}\times10^6=6\times10^{-1+6}=6\times10^5 \end{gathered}[/tex]

Therefore,

[tex]\frac{4.8\times10^{-4}}{8.0\times10^{-10}}=6\times10^5[/tex]