In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data
f'(x)= x² - 6
f(0) = 1
f(x) = ?
Step 02:
[tex]\int (x^2-6)dx\text{ = }\frac{x^3}{3}-6x[/tex][tex]\begin{gathered} f(0)=\frac{0^3}{3}-6\cdot0=\frac{0}{3}^{}-0=0 \\ f(x)\text{ =}\frac{x^3}{3}-6x+1 \end{gathered}[/tex]The answer is:
f(x) = x^3 / 3 - 6x + 1