Respuesta :

In this case, we'll have to carry out several steps to find the solution.

Step 01:

Data

f'(x)= x² - 6

f(0) = 1

f(x) = ?

Step 02:

[tex]\int (x^2-6)dx\text{ = }\frac{x^3}{3}-6x[/tex][tex]\begin{gathered} f(0)=\frac{0^3}{3}-6\cdot0=\frac{0}{3}^{}-0=0 \\ f(x)\text{ =}\frac{x^3}{3}-6x+1 \end{gathered}[/tex]

The answer is:

f(x) = x^3 / 3 - 6x + 1