Solve the quadratic equation by completing the square. 2+x=6x^2Completing the square gives us: (x- Answer )^2 = AnswerEnter your solutions below from smallest to largest. If a solution is repeated type that answer for both values of x. If your answer is not an integer then type it as a decimal rounded to the nearest hundredth.x=Answer and x=Answer

Solve the quadratic equation by completing the square 2x6x2Completing the square gives us x Answer 2 AnswerEnter your solutions below from smallest to largest I class=

Respuesta :

Subtracting x from the given equation we get:

[tex]6x^2-x=2+x-x=2.[/tex]

Dividing by 6 we get:

[tex]x^2-\frac{1}{6}x=\frac{1}{3}\text{.}[/tex]

Notice that:

[tex]x^2-\frac{1}{6}x=x^2+2(1)(-\frac{1}{12})x\text{.}[/tex]

Therefore:

[tex]x^2+2(1)(-\frac{1}{12})x=\frac{1}{3}[/tex]

Adding (-1/12)² from the above equation we get:

[tex]\begin{gathered} x^2+2(1)(-\frac{1}{12})x+(-\frac{1}{12})^2=\frac{1}{3}+(-\frac{1}{12})^2, \\ (x-\frac{1}{12})^2=\frac{1}{3}+\frac{1}{144}, \\ (x-\frac{1}{12})^2=\frac{49}{144}. \end{gathered}[/tex]

Solving for x we get:

[tex]\begin{gathered} (x-\frac{1}{12})^2=\frac{7^2}{12^2}, \\ x-\frac{1}{12}^{}=\pm\frac{7^{}}{12^{}}, \\ x=\frac{1}{12}\pm\frac{7^{}}{12^{}}, \\ x=\frac{2}{3}\text{ or x=-}\frac{1\text{ }}{2}\text{.} \end{gathered}[/tex]

Answer: Completing the square gives us:

[tex](x-\frac{1}{12})^2=\frac{49}{144}.[/tex]