A convex mirror has its radius of curvature 20cm. Find the position of the image of an object placed at a distance of 12cm from the convex side of mirror.

Respuesta :

Given:

Radius of the curvature R = 20cm

The distance of the object = 12 cm

Required:

Find the position of the image.

Explanation:

By using the mirror formula:

[tex]\frac{1}{u}+\frac{1}{v}=\frac{1}{f}[/tex]

Where u is negative.

[tex]\begin{gathered} f=\frac{R}{2} \\ =\frac{20}{2} \\ =10\text{ cm} \end{gathered}[/tex][tex]\frac{1}{v}=\frac{1}{f}-\frac{1}{u}[/tex]

Since f is negative for concave.

[tex]\begin{gathered} \frac{1}{v}=-\frac{1}{f}-\frac{1}{u} \\ \frac{1}{v}=-\frac{1}{10}-\frac{1}{12} \\ \frac{1}{v}=\frac{-6-5}{60} \\ \frac{1}{v}=\frac{-11}{60} \end{gathered}[/tex]

So

[tex]v=\frac{60}{11}\text{ cm}[/tex]

Final answer:

The distance of the image is

[tex]\frac{60}{11}\text{ cm}[/tex]

and it is negative.