Given:
Radius of the curvature R = 20cm
The distance of the object = 12 cm
Required:
Find the position of the image.
Explanation:
By using the mirror formula:
[tex]\frac{1}{u}+\frac{1}{v}=\frac{1}{f}[/tex]Where u is negative.
[tex]\begin{gathered} f=\frac{R}{2} \\ =\frac{20}{2} \\ =10\text{ cm} \end{gathered}[/tex][tex]\frac{1}{v}=\frac{1}{f}-\frac{1}{u}[/tex]Since f is negative for concave.
[tex]\begin{gathered} \frac{1}{v}=-\frac{1}{f}-\frac{1}{u} \\ \frac{1}{v}=-\frac{1}{10}-\frac{1}{12} \\ \frac{1}{v}=\frac{-6-5}{60} \\ \frac{1}{v}=\frac{-11}{60} \end{gathered}[/tex]So
[tex]v=\frac{60}{11}\text{ cm}[/tex]Final answer:
The distance of the image is
[tex]\frac{60}{11}\text{ cm}[/tex]and it is negative.