Respuesta :

SOLUTION

Consider the triangle shown below

This question will be solved using Pythagorean Theorem

Considering traingle KLN it follows:

[tex]x^2=y^2+20^2[/tex]

Considering triangle LMN it follows:

[tex]x^2=26^2-z^2[/tex]

Equate the x² values

[tex]y^2+20^2=26^2-z^2[/tex]

Considering triangle KLM

[tex]z^2=y^2^{}+6^2[/tex]

Substitute the value of z² into the previous equation

[tex]y^2+20^2=26^2_{}-(y^2+6^2)[/tex]

Simplify the equation

[tex]\begin{gathered} y^2+20^2=26^2_{}-y^2-6^2 \\ y^2+y^2=26^2-6^2-20^2 \\ 2y^2=240 \\ y^2=120 \end{gathered}[/tex]

Substitute y² into x²=y²+20²

[tex]\begin{gathered} x^2=120+20^2 \\ x^2=120+400 \\ x^2=520 \\ x=\sqrt[]{520}^{} \\ x=2\sqrt[]{130} \end{gathered}[/tex]

Therefore the value of LN is

[tex]2\sqrt[]{130}[/tex]

Ver imagen TeannaT725427