Respuesta :

Ok, so:

We know that A(4, -1) and B(-2, 3) are points in a coordinate plane. M is the midpoint of AB.

We want to find the length of MB.

M is the midpoint of AB, which is:

[tex]\begin{gathered} (\frac{-2+4}{2},\frac{3-1}{2}) \\ (1,1) \end{gathered}[/tex]

Remember that if we've got two points:

[tex](x_1,y_1);(x_2,y_2)[/tex]

The distance between them can be found using the formula:

[tex]D=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]

We want to find the length of MB, this is the distance between M( 1 , 1 ) and B( -2 , 3 ).

Replacing:

[tex]\begin{gathered} D=\sqrt[]{(3-1)^2+(-2-1)^2} \\ D=\sqrt[]{2^2+(-3)^2} \\ D=\sqrt[]{4+9} \\ D=\sqrt[]{13} \\ D=3.61 \end{gathered}[/tex]

Therefore, the length of MB is 3.61.

Ver imagen YarelM391940