Respuesta :

Ok, so

Here we have the following expression:

[tex]\sqrt[]{(5+12i)(12i-5)}[/tex]

We could multiply the brackets:

[tex]\sqrt[]{60i-25+144i^2-60i}[/tex]

And then simplify:

[tex]\sqrt[]{144i^2-25}[/tex]

Remember that

[tex]\begin{gathered} i=\sqrt[]{-1} \\ i^2=-1 \end{gathered}[/tex]

So if we replace:

[tex]\begin{gathered} \sqrt[]{144(-1)-25} \\ \sqrt[]{-144-25} \\ \sqrt[]{-169} \end{gathered}[/tex]

We could rewrite the last expression:

[tex]\sqrt[]{-169}=\sqrt[]{-1}\cdot\sqrt[]{169}[/tex]

And that is:

[tex]\sqrt[]{-1}\cdot\sqrt[]{169}=13i[/tex]

So the answer is 13i.

Written with the form a + bi:

This is 0 + 13i , which is 13i.