ANSWER:
0.24 and -1.64
STEP-BY-STEP EXPLANATION:
We have the following equation:
[tex]5u^2+7u-2=0[/tex]The formula for solving quadratic equations is as follows:
[tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]In this case:
a = 5
b = 7
c = -2
We substitute these values and calculate the solution of the equation:
[tex]\begin{gathered} u_{1,\:2}=\frac{-7\pm \sqrt{7^2-4\cdot \:5\left(-2\right)}}{2\cdot \:5} \\ \\ u_{1,\:2}=\frac{-7\pm\sqrt{89}}{10} \\ \\ u_1=\frac{-7+\sqrt{89}}{10}=0.24 \\ \\ u_2=\frac{-7-\sqrt{89}}{10}=-1.64 \end{gathered}[/tex]The solutions of the equation are u = 0.24 and -1.64