Respuesta :

Given:

The expression is,

[tex]\frac{1}{2}+\frac{15}{2x-14}-\frac{3x-15}{x^2-7x}[/tex]

Explanation:

Simplify the expression.

[tex]\begin{gathered} \frac{1}{2}+\frac{15}{2x-14}-\frac{3x-15}{x^2-7x}=\frac{1}{2}+\frac{15}{2(x-7)}-\frac{3x-15}{x^{}(x-7)} \\ =\frac{x(x-7)+15\cdot x-(3x-15)\cdot2}{2x(x-7)} \\ =\frac{x^2-7x+15x-6x+30}{2x(x-7)} \\ =\frac{x^2+2x+30}{2x(x-7)} \end{gathered}[/tex]

The function is not defined at which denominator is equal to 0. So,

[tex]\begin{gathered} 2x(x-7)=0 \\ x=0,7 \end{gathered}[/tex]

Thus function is defined for all values of x except 0 and 7. So domain of the function is,

[tex](-\infty,0)\cup(0,7)\cup(7,\infty)[/tex]