Respuesta :

Answer:[tex]x\text{ = }\sqrt[]{26}[/tex]Explanation:

This is a 45-45-90 triangle. It is also called an Isosceles right angled triangle

The triangle is drawn as shown below:

Find the value of x using the trigonometric identity below:

[tex]\begin{gathered} \sin \text{ }\theta\text{ = }\frac{\text{Opposite}}{\text{Hypotenuse}} \\ \sin \text{ 45 = }\frac{\sqrt[]{13}}{x} \\ \frac{1}{\sqrt[]{2}=\text{ }}\text{ }\frac{\sqrt[]{13}}{x} \\ \text{Cross multiply} \\ x\text{ = }\sqrt[]{2}\times\sqrt[]{13} \\ x\text{ = }\sqrt[]{26} \end{gathered}[/tex]

Therefore:

[tex]x\text{ = }\sqrt[]{26}[/tex]

Ver imagen TaziahS133098