Respuesta :

Given: A quadratic equation

[tex]f(x)=2x^2-12x+17[/tex]

Required: To find the vertex of the given function.

Explanation: For the quadratic equation of the type

[tex]f(x)=ax^2+bx+c[/tex]

The vertex is given by,

[tex]V=(-\frac{b}{2a},f(-\frac{b}{2a}))[/tex]

Hence, the x coordinate of the vertex is

[tex]\begin{gathered} x=-\frac{b}{2a} \\ =\frac{12}{2(2)} \\ =3 \end{gathered}[/tex]

Now for the y coordinate finding f(x) at x=3

[tex]\begin{gathered} f(3)=2(3^2)-12(3)+17 \\ =-1 \end{gathered}[/tex]

The vertex of given parabola is (3,-1).

Final Answer: The vertex is (h,k)=(3,-1)