Answer:
0.266 degrees.
Explanation:
To find the angle of the first bright interference, we will use the following equation
[tex]m\lambda=d\sin\theta[/tex]So, replacing
m = 1
λ = 580 nm = 580 x 10^(-9) m
d = 0.000125 m
we get:
[tex]1(580\times10^{-9})=0.000125\sin\theta[/tex]Then, solve for θ
[tex]\begin{gathered} 580\times10^{-9}=0.000125\sin\theta \\ \\ \frac{580\times10^{-9}}{0.000125}=\sin\theta \\ \\ 4.64\times10^{-3}=\sin\theta \\ \theta=\sin^{-1}(4.64\times10^{-3}) \\ \theta=0.266 \end{gathered}[/tex]Therefore, the answer is 0.266 degrees.