Suppose that the manufacturer of a gas clothes dryer has found that when the unit price is p dollars, the revenue R (in dollars) is R(p)= -2p^2+4,000p.A) At what prices p is revenue zero? B) For what range of prices will revenue exceed $400,000? Type answer in interval notation.

Respuesta :

The quadratic equation models the revenue with respect to the unit price is:

[tex]R(p)=-2p^2+4000p[/tex]

a) To find the prices when the revenue is zero, first zero the equation:

[tex]-2p^2+4000p=0[/tex]

Using the quadratic equation, where "p" is the independent variable, normally represented with the letter "x"

[tex]p=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

Where

a is the coefficient of the quadratic term, in this case, a= -2

b is the coefficient of the x-term, in this case, b= 4000

c is the constant of the quadratic equation, in this case, c= 0

[tex]\begin{gathered} p=\frac{-4000\pm\sqrt[]{(4000)^2-4\cdot(-2)\cdot0}}{2(-2)} \\ p=\frac{-4000\pm\sqrt[]{16000000-0}}{-4} \\ p=\frac{-4000\pm\sqrt[]{16000000}}{-4} \\ p=\frac{-4000\pm4000}{-4} \end{gathered}[/tex]

Solve the sum and difference separately:

-Sum:

[tex]\begin{gathered} p=\frac{-4000+4000}{-4} \\ p=\frac{0}{-4} \\ p=0 \end{gathered}[/tex]

-Difference

[tex]\begin{gathered} p=\frac{-4000-4000}{-4} \\ p=\frac{-8000}{-4} \\ p=2000 \end{gathered}[/tex]

At the unit prices 0 and 2000, the revenue will be zero.

b) You have to find the values of p for which the revenue is equal to 400000, to do so, equal the quadratic equation to the given revenue value:

[tex]400000=-2p^2+4000p[/tex]

Zero the equation

[tex]\begin{gathered} 400000-400000=-2p^2+4000p-400000 \\ 0=-2p^2+4000p-400000 \end{gathered}[/tex]

Use the quadratic equation to determine the prices, use:

a=-2

b=4000

c=-400000

[tex]\begin{gathered} p=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ p=\frac{-4000\pm\sqrt[]{(4000)^2-4\cdot(-2)(-400000)}}{2\cdot(-2)} \\ p=\frac{-4000\pm\sqrt[]{16000000-3200000}}{-4} \\ p=\frac{-4000\pm\sqrt[]{12800000}}{-4} \\ p=\frac{-4000\pm3577.708764}{-4} \\ \end{gathered}[/tex]

Sum:

[tex]\begin{gathered} p=\frac{-4000+3577.708764}{-4} \\ p=105.57 \end{gathered}[/tex]

Difference:

[tex]\begin{gathered} p=\frac{-4000-3577.708764}{-4} \\ p=1894.427\approx1894.43 \end{gathered}[/tex]

Between the prices $105.57 and $1894.43 the revenue will be greater than $400,000