I need to know the steps to solve the problem.

Solution
[tex]\begin{gathered} y=-5x^2+x-1 \\ y=-7 \end{gathered}[/tex]Step 1: Substitute the value of y
[tex]\begin{gathered} y=-5x^2+x-1 \\ y=-7 \\ -7=-5x^2+x-1 \end{gathered}[/tex]Step 2: Collect the like terms:
[tex]\begin{gathered} -7=-5x^2+x-1 \\ 5x^2-x+1-7=0 \\ 5x^2-x-6=0 \\ 5x^2+5x-6x-6=0 \\ 5x(x+1)-6(x+1)=0 \\ (5x-6)(x+1)=0 \\ 5x-6=0,x+1=0 \\ 5x=6,x=-1 \\ x=\frac{6}{5},x=-1 \end{gathered}[/tex]Therefore the solution are:
[tex]\begin{gathered} x=-1,x=\frac{6}{5} \\ x=(-1,\frac{6}{5}) \end{gathered}[/tex]