Respuesta :

Answer:

Neither

Explanation:

Given the two lines below:

[tex]\begin{gathered} L1\colon3x-y=-9 \\ L2\colon32x+12y=-9​ \end{gathered}[/tex]

First, express each line in the slope=intercept form (y=mx+b):

[tex]\begin{gathered} L1\colon3x-y=-9\implies y=3x+9 \\ Slope\text{ of Line 1,}m=3 \end{gathered}[/tex]

Similarly:

[tex]\begin{gathered} L2\colon32x+12y=-9 \\ 12y=-32x-9 \\ y=-\frac{32}{12}x-\frac{9}{12} \\ y=-\frac{8}{3}x-\frac{3}{4} \\ \text{Slope of Line 2, }m=-\frac{8}{3} \end{gathered}[/tex]

• For the lines to be parallel, the slopes must be equal.

,

• For the lines to be perpendicular, the product of the slopes must be -1.

Since none of these occurs, the lines are neither parallel nor perpendicular.