Respuesta :

First, remember the following equivalences:

[tex]cscx=\frac{1}{sinx}[/tex]

and:

[tex]cos²x+sin²x=1[/tex]

then, given the trigonometric equation, if we use the distributive property and the first equivalence on the left side, we get:

[tex]\begin{gathered} (csc²x-1)sin²x=(\frac{1}{sin²x}-1)sin²x \\ =\frac{sin²x}{sin²x}-sin²x=1-sin²x \end{gathered}[/tex]

then, by the second equivalence:

[tex]\begin{gathered} 1-sin²x=cos²x \\ \Rightarrow cos²x=cos²x \end{gathered}[/tex]

therefore, (csc²x-1)=cos²x