Respuesta :

Given the equation:

[tex]x^2-2x+3=0[/tex]

Let's find the roots of the equation.

To find the roots of the equation, let's solve for x using the quadratic formula:

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{4a}[/tex]

Use the standard equation to find the values of a, b, and c:

[tex]\begin{gathered} ax^2+bx+c=0 \\ \\ x^2-2x+3=0 \end{gathered}[/tex]

a = 1

b = -2

c = 3

Input the values into the quadratic equation and solve for x:

[tex]\begin{gathered} x=\frac{-(-2)\pm\sqrt{-2^2-4(1)(3)}}{2(1)} \\ \\ x=\frac{2\pm\sqrt{4-12}}{2} \\ \\ x=\frac{2\pm\sqrt{-8}}{2} \end{gathered}[/tex]

Solving further:

[tex]\begin{gathered} x=\frac{2\pm\sqrt{(8)(-1)}}{2} \\ \\ \text{ Where:} \\ \sqrt{-1}=i \\ \\ x=\frac{2\pm i\sqrt{8}}{2} \\ \\ x=\frac{2\pm i\sqrt{(2)(4)}}{2} \\ \\ x=\frac{2\pm i\sqrt{(2)(2)^2}}{2} \end{gathered}[/tex]

Therefore, we have:

[tex]\begin{gathered} x=\frac{2\pm2i\sqrt{2}}{2} \\ \\ \text{ Divide all terms by 2:} \\ x=\frac{2}{2}\pm\frac{2i\sqrt{2}}{2} \\ \\ x=1\pm i\sqrt{2} \end{gathered}[/tex]

The roots of the equation:

[tex]x=1\pm i\sqrt{2}[/tex]

ANSWER:

[tex]1\pm i\sqrt{2}[/tex]