Therefore,
[tex]xy=k\text{ where k is a constant}[/tex]Then,
[tex]x_1y_1=x_2y_2[/tex]In this case,
[tex]x_1=-12,y_1=\frac{3}{2},x_2=2,y_2=\text{?}[/tex][tex]2y_2=-12(\frac{3}{2})=-6\times3=-18[/tex]this implies that
[tex]\begin{gathered} \frac{2y_2}{2}=\frac{-18}{2} \\ \text{therefore} \\ y_2=-9 \end{gathered}[/tex]Therefore, when x = 2, y = -9