Find the distance between (7, ) and(Show work)(5, ) on the polar plane.

In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data:
point 1 (7 , 217/180 π)
point 2 (5 , - 23/36 π)
Step 02:
distance between points:
[tex]d=\sqrt[]{r1^2+r2^2-2\cdot r1\cdot r2\cdot\cos \text{ (}\theta1-\theta2)}[/tex]r1 = 7
r2 = 5
θ1 = 217/180 π
θ2 = - 23/36 π
[tex]d=\sqrt[]{7^2+5^2-2\cdot7\cdot5\cdot\cos (\frac{217}{180}\pi-}(-\frac{23}{36}\pi))[/tex][tex]d=\sqrt[]{49+25-70\cdot\cos (1.844\pi)}[/tex][tex]d=\sqrt[]{4.3575}=2.0875[/tex]The answer is:
distance = 2.0875